Single Medial Prefrontal Neurons Cope with Error
نویسندگان
چکیده
منابع مشابه
Single Medial Prefrontal Neurons Cope with Error
Learning from mistakes is a key feature of human behavior. However, the mechanisms underlying short-term adaptation to erroneous action are still poorly understood. One possibility relies on the modulation of attentional systems after an error. To explore this possibility, we have designed a Stroop-like visuo-motor task in monkeys that favors incorrect action. Using this task, we previously fou...
متن کاملHierarchical error representation in medial prefrontal cortex
The medial prefrontal cortex (mPFC) is reliably activated by both performance and prediction errors. Error signals have typically been treated as a scalar, and it is unknown to what extent multiple error signals may co-exist within mPFC. Previous studies have shown that lateral frontal cortex (LFC) is arranged in a hierarchy of abstraction, such that more abstract concepts and rules are represe...
متن کاملErratum: Noradrenergic control of error perseveration in medial prefrontal cortex
The medial prefrontal cortex (mPFC) plays a key role in behavioral variability, action monitoring, and inhibitory control. The functional role of mPFC may change over the lifespan due to a number of aging-related issues, including dendritic regression, increased cAMP signaling, and reductions in the efficacy of neuromodulators to influence mPFC processing. A key neurotransmitter in mPFC is nore...
متن کاملImpaired error-likelihood prediction in medial prefrontal cortex in schizophrenia
The cognitive impairment in individuals with schizophrenia includes deficits of working memory in dorsolateral prefrontal cortex and deficits of performance monitoring in medial prefrontal cortex (MPFC). Recent work suggests a more general role for MPFC in predicting the outcome of actions and then evaluating those predictions. Here we investigate, in individuals with schizophrenia, two specifi...
متن کاملProjection-specific neuromodulation of medial prefrontal cortex neurons.
Mnemonic persistent activity in the prefrontal cortex (PFC) constitutes the neural basis of working memory. To understand how neuromodulators contribute to the generation of persistent activity, it is necessary to identify the intrinsic properties of the layer V pyramidal neurons that transfer this information to downstream networks. Here we show that the somatic dynamic and integrative propert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2009
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0006240